
1300+
Integrations

Asana
Time trackingThe Definitive Guide

to Building Product
Integrations

The Definitive Guide
to Building Product
Integrations

- Build vs. Buy - Build vs. Buy

You must decide
whether to build or buy
an integration solution.

Once you recognize the need to o!er integrations to your
customers but don’t want to rely on third-party services like
Zapier, then you must decide whether to build or buy an
integration solution. This article explores the total cost and
considerations of both approaches.

There is no single cookie-cutter integration that will suit the
needs of every one of your SaaS applications’ end-users. Each
end-user will want custom functionality. This guide will help
inform your business and R&D team as to the time it will take to
build an integration solution in-house and how to best scale your
integration strategy based on the collective knowledge of a team
of experts with years of experience in this domain and use case.

1

Eight main components need to be developed in order to achieve
a flexible integration o!ering for your customers. This article
explains each of these components in detail to guide your
decision-making process.

Connectors

Authentication

Webhooks

Monitoring & Alerting

Testing & Debugging Testing & Debugging Testing & Debugging

— Orchestration Orchestration

— — Mapping & Transformation

Connectors Connectors

Authentication Authentication

Webhooks Webhooks

Monitoring & Alerting Monitoring & Alerting

Schedulers Schedulers Schedulers

Simple Moderate Complex

Before diving deep into each component, let’s understand the
following levels of complexity:

Simple: The integration has a single trigger and single action with
no custom logic involved.
Moderate: The integration has a single trigger and can kick o! a
series of di!erent actions.
Complex: The integration has a trigger, kicks o! a series of
di!erent events based on custom logic and can transform the
output at each step of the workflow (Date/time, branching
logic, if/then, data types and formula fields.

2

8 Crucial Components of a Flexible
Integration

Connectors

Every SaaS application category (i.e CRM) has a plethora of web services
(applications) available that your customers will want to integrate with.
For example, if your product needs to provide integrations for accounting
software, then you have to consider QuickBooks Online/Desktop,
FreshBooks, NetSuite, SAP Concur, Sage, and the list goes on. If you
want to capture a large number of systems that your customers use
then you must build connectors for the maximum number of
applications in each business category relevant to your customers.

3

Building connectors for all these applications is not an easy task.
Each application uses di!erent standards and methods when
exposing their services. For example, QuickBooks Online exposes
data using a REST-based API secured with OAuth 2.0, SAP exposes
data using an OData API secured with Basic authentication, and
NetSuite exposes data using a SQL operation and authenticated
using a JDBC connection string.

Now, let’s break each of these components down further:

4

Some applications also require you to be in their partner program
to use their API. For some applications, you even need to
purchase the license to be able to use their API. This can be a
time-consuming e!ort on top of the actual development e!ort.

Main Considerations:

1. HTTP standards and patterns

There are many di!erent HTTP standards now in use like
REST, SOAP, OData, and GraphQL.
Each pattern dictates how you retrieve data from
third-party applications.

You must understand the di!erent request/response
formats used by the third-party application. Most of the
new applications use JSON payloads but legacy
applications use XML/SOAP payloads.
You should be able to handle these various data formats
and mediate between them by converting these di!erent
data formats to a single data format.
Third-party APIs are susceptible to change. API versions
may change or old APIs may be deprecated. API versions
request/response schemas may change, which could
break your existing integration and impact your
customers.

2. Request/Response formats and Schemas

When you receive large data sets from third-party
applications, you are likely to use pagination.
Pagination is mostly used in polling-based triggers and
sync operations where you would query the APIs based
on a specified date range.

3. Pagination

Estimated Time:

4-8 weeks
per connector

5

Many third-party applications put limits on API
consumption. Those restrictions can include per
account, per partner, and per resource. For Example,
Google Sheet has an API limit of 100 requests per 100
seconds per user and 500 requests per 100 seconds per
project (The project being you).
When you build connectors you have to throttle API
requests as per the third-party API limits which again,
can be a challenging task and additional development
work.

When you build connectors for similar apps you might
want to build a common data model. For example,
Google Drive, One Drive, Box, and Dropbox are similar
apps being used for the same purpose. You could build
the common data model (also now known as unified
API) for these so that you can simplify integration data
mapping.

4. Throttling and API Limits

5. Common data model

Authentication:

As explained in the connectors section, each application uses
di!erent authentication mechanisms. You have to carefully design
your back-end and front end for supporting di!erent types of
authentications.

6

Main Considerations:

There are 10+ authentication mechanisms available and
each one requires its own implementation.
At the minimum, you should support the most widely
used authentication mechanisms which are Oauth 2.0,
Oauth 1.0, OpenID Connect, API key, Basic
Authentication, and HMAC signature.
Oauth 2.0 & Open ID connect itself are separate
applications because you need to build front end
components for initiating the authentication and
redirecting the user post-authentication. You also need a
backend service to receive the authentication codes and
exchange them for access/refresh tokens. You also need
to store those tokens securely.

HMAC signature-based authentications are mostly for
custom authentication types. There are no standards for
these response types. For example, some applications
may expect you to hash the entire payload including the
header/request URLs with shared keys while others
might expect private keys. Some expect you to include
timestamps while others do not. The point being, most
of the time you will need to do this authentication for
every new application that uses HMAC.

7

Estimated Time:

1-2 months
(this is a separate
microservice you must
develop).

Main Considerations:

Building a cron job for a single user may seem trivial, but
when it comes to 100s or 1000s of integrations, your
pollers should spawn 1000s of cron jobs.
You should be able to spawn cron jobs when the
integration is published and removed when an
integration is deleted.
To support these requirements, you need to maintain
the state of the cron job by using an in-memory cache
or database while exposing microservices for spawning
and killing cron jobs.

Schedulers:
Schedulers or polling services are required for pulling data from
third-party applications on a date/time range. The purpose of a
scheduler is to invoke a third-party API periodically (cron job) to
query datasets changed in a particular period and if any data is
found it will trigger subsequent steps (actions).

18

Estimated Time:

1+ month

Main Considerations:

There is no fixed standard for how a webhook can be
used.
Some applications encrypt the request payload while
others don’t.
Webhook authentication/verification di!ers from
application to application.
Some applications use webhooks for the account/org
level, while some use it at a resource level and others use
both levels. You will want to host webhook handlers for
each application, user & resource (Ex: Contacts,
employees, and opportunities)

Webhook:
A webhook is an event or data pushed from a third-party
application in which you need to expose a URL and configure it in
a third-party application so that the third-party application can
send the event to that endpoint whenever data has changed.
Building a webhook again might seem trivial but supporting
webhooks for multiple applications will become challenging.

19

Estimated Time:

1 month

Monitoring & Alerting
Integrations are not “build once and be done”. You need to
provide continuous support post-release when your customers
are creating their first integration in your platform and after the
integration is published. You also need to consider your customer
SLAs in case failures occur to take corrective measures to
properly triage the issue as fast as possible.

10

Main Considerations:

1. Alerting mechanism

Alerting your customers as soon as a transaction fails is
very important.
The reason for the failure may be the issue with the
integration setup or the data. Your customers should be
able to know what caused the issue (they will ask).

11

Imagine if the integration is supporting a mission-critical
process such as creating a sales opportunity or sending
an invoice to a customer. You will want to be able to
triage these issues fast to meet your customer SLAs.

The integration should be able to automatically retry in
case of network issues or API limit issues. Depending on
the third-party API you might want to do exponential or
linear retry.

2. Automatic Retry

Transaction logging is required for both your customers
and your support team to quickly resolve the issue.
When the transaction data is logged you should consider
data masking for security compliance. In some cases,
you might want the customer to configure which data
fields to mask.

3. Debugging and/or logging system

Estimated Time:

2-3 months

Main Considerations:

Your customers should be able to test each step when
they are setting up the integration. For example, if they
are setting up the trigger for the integration they should
be able to test and verify their setup step by step
(assuming it is a multi-step workflow).

Testing & Debugging
Testing and debugging features help your customers and/or
internal teams set up integrations in your product on their own.
This in turn reduces the time it takes to respond to the end
user’s integration requests.

Estimated Time:

1 month

12

Orchestration:
Point to Point integration creates multiple bottlenecks as the more
integrations you build will often lead to “spaghetti code” which
gets di!cult to manage and maintain. Application orchestration
provides an approach to integration that decouples applications
from one another. This enables you to route messages, transform
events, and most importantly, it provides a way to manage and
monitor your integrations from a central location.

13

Main Considerations:

1. Individual applications/API calls/transformation logic
as triggers, actions, or steps

When you build point-to-point integration you may have
everything in a single module like Source/Target API
Calls, data transformation, and data mapping. But if you
want to build reusable integration components and
reduce the complexity you have to split the integration
into smaller modules like triggers, actions and events.

14

Estimated Time:

2-3 months

Actions can be anything like making API calls,
transforming request/response payloads, executing
custom scripts, etc.

To build a fault-tolerant and scalable orchestration layer
you must decouple event flow and event processing.
You can use event buses or message queues or topics
for decoupling events and the processing.
When you decouple event flow and event processing you
are building an orchestration layer.

2. Decoupling event flow and processing

3. Orchestration requires a special font-end that we call
the “workflow builder” which can be drag and drop
based or guided configuration setup. Which itself
requires multiple back-end/front-end components.

Main Considerations:

1. Dynamic Configuration Form/UI

Whether it is a point-to-point integration or application
orchestration, you need to get the inputs for each
application from the user to invoke the third-party API.
For Example, to send the data into Google sheet you
need the drive, file name, and sheet information. These
inputs will change application to application and API to
API. So your front-end components should be able to
build a dynamic form depending on the application or
how the action is configured.

Integration No Code
User Interface (Builder)

The no-code integration builder is a front-end component that
enables your customers or internal business team to create and
publish integrations. This is a critical component for maximizing
integration usage (as mentioned earlier, each customer will have
di!erent requirements). Depending upon whether you build a
point-to-point or application orchestration integration solution,
your workflow builder’s complexity may increase.
For point-to-point integrations, the integration builder will be
simpler. It can be simple wizards with mostly 2 – 3 steps.
For application orchestration, the integration builder will be
complex. You may want the user to drag and drop each step/
action and configure the steps on separate popup forms.

15

Depending on the application your input validation can
be static or dynamic. Hence, you might want to build a
special back-end API that validates the dynamic input
forms based on the application.

2. Input validation

3. Data flow representation in the UI

16

Estimated Time:

9-18 months

Transformation:
As mentioned, if you want the ability for your end-users to modify
the data mapping between the source and target applications this
will require additional UI and back-end components your product
and development team must consider.

17

Main Considerations:

1. Formulas

You must build a suite of formulas for each data type.

Bulk data mapping is required when the API operation
has any number of fields that need to get mapped. We
firmly believe this is a critical requirement as every
customer’s internal systems are setup di!erently.

2. Bulk data mapping

18

API requests/responses may have complex structures
like arrays and objects. You will need additional front
end components (in the workflow builder and formula
editor) to identify the parent object or child object,
extract the required field (or array) and map it to the
end destination field.

3. Arrays and Objects

Estimated Time:

1 month

